THE GENUS OTHECOCTONUS ASHMED IN NORTH AMERICA
(HYMENOPTERA: PROCTOTRUPOIDEA: SCELIONIDAE)

LUBOMIR MASNER
Biosystematics Research Institute, Agriculture Canada, Ottawa KIA 0C6

Abstract


The genus Otheoctonus of North America is revised. Three species are recognized, of which two are new to science: O. ophrionopus and O. pleuralis. O. ocanthi (Riley), the type-species of the genus, is redescribed and figured. A generic diagnosis of Otheoctonus and key to North American species are given. The higher classification and world distribution of Otheoctonus species are discussed.

Résumé


INTRODUCTION

Members of the genus Otheoctonus, so far as known, attack the eggs of tree crickets (Orthoptera: Oecanthidae). The slender shape of the adult wasps is determined by the shape of the host eggs in which the entire postembryonic development of the parasitoid takes place. There is always only one parasitoid per egg attacked and it fills the entire inner space of the host egg when fully mature. The host eggs are laid randomly or in series, deeply embedded in the tissues of various plants. Otheoctonus females presumably search for minute scars, indicators of oviposition, on the surface of plants. It seems that the wasps spend most if not all of their adult life around the plants. Consequently, adults of Otheoctonus are very seldom caught by sweeping and never encountered in pan or pitfall traps. Malaise traps, particularly in the tropics, seem to be more productive. However, a beating sheet (with special sleeve-like attachment) is possibly the best collecting technique, particularly for night collecting on bushes. Adults of Otheoctonus are assumed to be crepuscular and nocturnal in habits, as are their hosts, the tree crickets. This assumption is based on generally large ocelli in adults of most species; individuals of some undescribed Neotropical species of Otheoctonus (in CNC) exhibit extremely large ocelli. Similarly, it is interesting to note that adults are sometimes caught in light traps.

Otheoctonus is a pantropical genus, with only a few species penetrating the temperate zones (Masner 1976). No species is at present known from the Palearctic region and only three species are reported here from North America. The Neotropical region (excluding Chile) is particularly rich in species; 20 undescribed species were recognized in the large amount of Neotropical material in the CNC alone. Interestingly enough, only two species have been described from the Neotropical region, viz., O. insularis (Ashmead) and O. laticinctus (Ashmead), both from St. Vincent, W.I.

Masner (1976) classified Otheoctonus in the tribe Calliscelcionini and compared it with Probaroctonus Kieffer. These two genera seem to intergrade, particularly in the Neotropical region. Solution of this problem is deferred to a later date when more accumulated material should permit proper interpretation of generic limits. At present the two genera are interpreted and distinguished upon character states used by Masner (1976, 1980). No attempt is made at this time to define species-groups in Otheoctonus. However, the three species in North America appear to be closely related to one another, and
represent an extension of a Neotropical group which includes the Caribbean O. insularis. Some Neotropical species are characterized by the peculiar regional colour pattern in which the head and metasoma are melanic whereas the mesosoma is bright red.

MATERIAL AND METHODS

Material was borrowed from, or donated by, the following institutions (with curator’s names in parentheses) and persons:

AMNH — American Museum of Natural History, New York, NY (M. Favreau)
CAS — California Academy of Sciences, San Francisco, CA (P. Arnaud)
CNC — Canadian National Collection of Insects, Ottawa, Ont. (L. Masner)
Darling coll. — Collection D.C. Darling, Cornell U., Ithaca, NY
DFAS — Department of Food and Agriculture, Sacramento, CA (M. Washbauer)
FSCA — Florida State Collection of Arthropods, Gainesville, FL (L. Strange)
MCZ — Museum of Comparative Zoology, Cambridge, MA (R. McGehee)
UAT — University of Arizona, Tucson, AZ (F. Werner)
Wharton coll. — Collection R. Wharton, Texas A&M University, College Station, TX

All specimens were mounted on points. To study the microsculpture (e.g. fine shagreening on mesoscum) and to avoid glare and light reflections at high magnification (160 x) a sheet of tracing paper (Mylar) was placed between the source of light and the specimen. For the best results the specimen should be as close to the above light disperser as safely possible.

Oethecoctonus Ashmead

Oethecoctonus Ashmead, 1900, Can. Ent. 32: 368.

Slender, elongate forms; head in dorsal view subquadrate; mandibles short, tridentate; clypeus rectangular, rather narrow, not wider than outside rims of toruli, with anterolateral corners pointed but not prominent; palp formula 4-2; frontal despression not developed, lower frons bisected by a median keel ascending from antennal insertion; cheeks with distinct fans of striae radiating from mandibular base; vertex rounded into occiput as horizontal part of occipital carina not developed; vertical part of occipital carina strong and sharp; ocellar triangle rather high, POL > LOL, posterior ocelli almost contiguous with inner orbits; eyes distinctly hairy; radicle short; antennal formula 12-12, female antenna with A3 longer than A2, and with distinct 6-segmented clava; male antenna with A3–A12 distinctly elongate, covered with very short hairs, A5 (sex segment) with weak carina basally.

Mesosoma cylindrical, elongate, about as high as wide; epominal carina in dorsal view prominent and sharp; notauli and skaphion absent; metatrochanter well differentiated, distinctly open above fore coxa; scutellum in front with row of foveolae; mesopleuron between fore and middle coxae very long; acroepum carina sharp and entire; mesopleural carina not developed or obscured by sculpturing; mesopleural depression rather shallow, mesepimeron in front with row of foveolae; metanotum narrow, not expanded, unarmed; propleuron dorsally not excavate, with two subparallel keels terminating dorsally in pair of protuberances or points; fore wing venal formula mg < st < pm, submarginal vein setose, not "broken" before merging into marginal vein, basal and medial veins at most indicated as traces; hind wing with complete submarginal vein; legs slender, tibial spur formula 1-1-1, tarsal formula 5-5-5.

Metasoma elongate, moderately pedunculate, with T1 and T2 longitudinally costate; in female with 6 visible tergites and 6 sternites, with T1 distinctly elongate, without hump,
with T2 almost as long as T3, the latter the widest, with T6 wider than long, with T7 not exposed but articulating with ovipositor; in male with 8 visible tergites and 7 sternites.

**KEY TO NORTH AMERICAN SPECIES OF Oethecoctonus (♀ ♂)**

1. Inner orbits of eyes (in front of posterior ocelli) distinctly elevated above eye margin, forming supraorbital tori; frons between tori moderately excavate (dorsal view); Arizona .............................................. O. ophryopus n. sp. ♀
   - Inner orbits of eyes not elevated above eye margin; frons between orbits not excavate (dorsal view) ................................................................. 2

2. Mesopleuron below mesopleural depression smooth, with only a few scattered minute punctures; head as long as wide, with occiput only moderately excavate; Arizona ................................................................. O. pleuralis n. sp. ♂
   - Mesopleuron below mesopleural depression distinctly sculptured, rugoso-punctate to densely punctate; head slightly wider than long, with occiput distinctly excavate (Fig. 3); Guatemala, Mexico, USA, Canada .................................................................................. O. oecanthi (Riley) ♀ ♂

**Oethecoctonus ophryopus n. sp.**

**Female.** Length 2.3 mm. Dark brown to black; radicle, mandibles, palpi, legs including coxae, tegulae and anterior rim of T1 yellowish brown; antennae brown; wings clear.

Head in dorsal view subquadrate, only slightly transverse (31:35), slightly wider across temples than across eyes; lower frons (above antennal insertion) smooth, frons along inner orbits densely punctate, sculpture becoming gradually rougher, granular-rugulose on supraorbital tori; tori distinctly elevated above eye level (in front of posterior ocelli) in both lateral and frontal views; frons between tori moderately concave, with little smooth spot in front of anterior ocellus; intercellar space finely rugosopunctate, occiput with deeper and larger punctures; antennal segments in relative proportions (length/width): 23:5, 9:4, 13:2:5, 9:3, 5:4, 4:5, 6:7, 5:7, 4:7, 4:7, 6:5:5.

Mesopleuron below mesopleural depression rugoso-punctate; scutellum mostly smooth, with a few scattered punctures; propodeal keels terminating in low points in anterior half of propodeum.

T3 almost smooth, under high magnification (160×) with fine longitudinal aculation medially; T3–T6 smooth, with a few scattered setigerous punctures, punctuation denser on T6.

**Male.** Unknown.

**Type material.** Holotype ♀ (CNC No. 17027), ARIZONA, Cochise Co., 5000′, Cave Creek Canyon, October 19 1978, L. Masner, sweeping vegetation along creek; paratype ♀ (CNC), ARIZONA, Ramsey Canyon, Huachuca Mts., 6000′, 15 mi S. Sierra Vista, August 1967, R. F. Sternitzky.

**Distribution.** Arizona.

**Variability.** The female from Ramsey Canyon shows longitudinal striae on T3 more distinct than in the holotype. This kind of sculptural variation involving T3 is found also in O. oecanthi.

**Remarks.** O. ophryopus can be distinguished from O. oecanthi by having strong supraorbital tori and frons between them more concave. From O. pleuralis it differs by sculpturing of mesopleura. The name of this new species refers to its supraorbital tori ("eyebrows"), unique among the Nearctic members of Oethecoctonus.
**Oethecocotus pleuralis** n. sp.

**Male.** Length 2.4 mm. Dark brown to black; antennae and legs (except for darker coxae) light brown; wings clear.

Head in dorsal view subquadrate, almost as long as wide (30:31), slightly wider across eyes than across temples; most of frons smooth, parts adjacent to inner orbits and below anterior ocellus finely punctate; small smooth spots immediately in front of anterior ocellus and behind posterior ocelli; no supraorbital tori; frons between inner orbits not depressed; interocular space granular; vertex coriaceous, with scattered punctures; occiput only slightly excavate medially; temples behind eyes at first parallel, then receding, shorter than eye length (12:15); antennal segments in relative proportions (length/width): 19:4, 8:4, 16:4, 15:3:5, 12:4, 11:4, 10:4, 9:4, 9:4:5, 9:4:5, 9:4:5, 12:4.

Mesopleuron below mesopleural depression predominantly smooth, with only few fine scattered punctures situated mainly near acetalbar carina; mesopleural carina not developed; mesopleural depression shallow, smooth; propodeal points situated near middle of propodeum; venal formula 10:12:27.

Metasoma very slender; T3 with longitudinal sculpture all over, with no rugulosities or coriaceous elements at sides; T4–T6 almost smooth, with scattered setigerous punctures.

**Female.** Unknown.

**Type material.** Holotype ♀ (USNM), ARIZONA, Santa Rita Mts., Madera Canyon, August 9 1961, at UV light, F. Werner and J. Nutting; type well preserved.

**Distribution.** Arizona.

**Remarks.** The record at UV light indicates again that some members of *Oethecocotus* are nocturnal. The predominantly smooth mesopleura as well as the nearly quadrate head will distinguish this species from the other two Neartic species. There is little likelihood that *O. pleuralis* may be the opposite sex of *O. ophryopus*, because adult sexual dimorphism of this sort is not evident in *O. oecanthi*, for which both sexes are known. The name of this new species refers to the remarkable smoothness of its mesopleuron.

**Oethecocotus oecanthi** (Riley)

Figs. 1–7


*Oethecocotus oecanthi:* Ashmead 1900, Can. Ent. 32: 368.


**Female.** Length 2.0–2.4 mm. Dark brown to black; legs, including coxae and A1–A6 from yellowish brown to dark brown; wings almost clear, or at most slightly tinted.

Head subquadrate, slightly wider than long; distinct median keel (often consisting of several finer parallel keels) arising from antennal insertion and reaching to about middle of frons; frons predominantly sculptured, shagged-nunctate or rugulose-punctate, with smaller or larger smooth area around and above median keel, and with smaller smooth area immediately below are anterior ocellus, sometimes these two smooth areas confluent; cheeks above and below subocular suture with distinct fan-like striae; mandibles tridentate,
with median tooth smallest; interocellar space coriaceous, with scattered punctures; upper occiput distinctly excavated medially, coriaceous-punctate to regulose-punctate; occipital carina well developed at sides, absent at meson; supraorbital tori not developed; A3 3.0–4.3 times as long as wide, from as long as to 1.5 times longer than A2; A4 1.7–2.7 times as long as wide, from shorter than to as long as A2; A5 from distinctly transverse to slightly elongate. Pronotum at sides with distinct chain of foveolae subparallel to lower anterior margin (from fore coxa to epomial carina), with distinct patch of granular sculpture in posterodorsal corner (in front of spiracle); space on pronotum between granular patch and epomial carina usually smooth, rarely coriaceous or with slight longitudinal rugulae; metrion with transverse ridges; mesoscutum with dense punctuation, interstices between
punctures predominantly shagreened except in front of scutellum and variably at posterolateral as well as median parts of mesoscutum; scutellum deeply and densely punctured, with no shagreened microsculpture, with deep foveolae along anterior and posterior margins, in some individuals with minute point situated posteromediadally; mesopleuron from rugoso-punctate to predominantly punctate; mesopleural depression partly smooth, with distinct mesopleural pit; mesepimeron smooth, separated from mesepisternum by chain of deep foveolae; propodeal points from indistinct to sharply protruding, often obscured by dense pilosity; fore wings slightly surpassing tip of metasoma; stigmal vein 1.8–2.3 times as long as marginal vein.

Metasoma slightly longer than head and mesosoma combined; T1 always longitudinally costate; T2 usually costate as T1, often with some coriaceous sculpture in posterior part and at sides; T3 usually striate longitudinally at meson, and with rugosopunctate or coriaceous-punctate sculpturing at sides, rarely entire T3 reticulate-rugose or coriaceous, with scattered punctures, or almost smooth and with only delicate longitudinal aciculation and few scattered punctures; T4–T6 punctate, T4 in some individuals with some coriaceous sculpturing.

**Male.** Differing from female in secondary sexual characters: A3 3 times as long as wide, slightly longer than A4; A5–A11 2.5 times as long as wide, A5 with low keel reaching slightly over basal half of the segment.

**Material examined.** Arizona: 6 ♀ ♂ Cave Creek Canyon, Chiricahua Mts., Cochise Co., 5000’, Oct. 19 1978, L. Masner (CNC); 2 ♀♀ and ♂ as above but caught September 26-29 1966,

**Distribution.** Specimens were examined from Florida to Ontario in the eastern Nearctic, midwest of USA, and from Guatemala through Mexico to California in the west. This is the most frequently encountered Nearctic species of *Oecanthus conurus*, obviously widespread but sporadic in number of individuals.

**Variability.** This is a highly variable species, the most remarkable differences among individuals being found in the sculpturing of T3, colour of legs and antennae and the sculpturing of frons, mesocutum and mesopleuron. Less remarkable but still important variations occur in characters such as the ratios of marginal and stigmal veins in the fore wing, length/width ratios of A3, A4 and A5 in female antenna, sculpturing of T4, as well as the total body length. This usually high degree of variability could be perhaps explained by the wide range of distribution of *O. oecanthi*. However, none of the above variations (or their combinations) could be linked to a particular geographic area, meaning that they represent merely intrapopulational variations. Nevertheless, some of the above extremes (e.g. the sculpturing of T3) considered alone are very striking, only rarely paralleled by similar variation among other Nearctic scelionid wasps.

**Biological.** Individuals were bred from eggs of *Oecanthus fultoni* Walker and *O. quadripunctatus* Beut. (Muesebeck in Krombein 1979).

**Remarks.** This is the most frequent North American species of *Oecanthus conurus*. It differs from the other two, more rare Nearctic species as follows: from *O. ophrynopus* by lack of supraorbital tori, and from *O. pleuralis* by densely sculptured mesopleuron as well as by slightly transverse head.

**ACKNOWLEDGMENTS**

The SEM micrographs were taken by Mr. G. A. P. Gibson (now at The University of Alberta, Edmonton), and the line drawings were done by Mrs. S. Rigby (Biosystematics Research Institute, Agriculture Canada, Ottawa). The staff of the Electron Microscope Centre (Chemistry and Biology Research Institute, Agriculture Canada, Ottawa) made the scanning technology available. Curators from North American Museums (cf. Material and
Methods) kindly loaned specimens of *Oethococtonus*. Dr. H. J. Teskey, Dr. W. R. Mason, and Dr. E. E. Lindquist (Biosystematics Research Institute, Ottawa) kindly reviewed the manuscript.

REFERENCES
(Received 1 April 1982; accepted 3 August 1982)